Геометрия 8 класс все правила и теоремы и доказательства

Конспект

Геометрия 8 класс все правила и теоремы и доказательства

«Краткий курс геометрии 8 класс» — это краткие теоретические сведения по курсу геометрии за 8 класс (определения, теоремы, основные свойства). Цитаты взяты в учебных целях из пособия «Геометрия: задачи на готовых чертежах для подготовки к ОГЭ и ЕГЭ (базовый уровень): 8 класс / Э.Н.Бабаян. — Ростов н/Д: Феникс.

☑  1. Многоугольник

ABCDE — пятиугольник (рис. 11). Точки А, В, С, D, Е — вершины многоугольника; ∠A, ∠B, ∠C, ∠D, ∠E — углы; АВ, ВС, CD и т. д. — стороны; отрезки АС, AD, BE, BD, СЕ — диагонали; Р = АВ + ВС + … + ЕА — периметр многоугольника.Многоугольник называется выпуклым (см. рис.

11), если он целиком расположен по одну сторону от каждой прямой, проходящей через две его соседние вершины. В противном случае многоугольник называется невыпуклым (рис. 12).
Свойства1. Сумма внутренних углов произвольного n-угольника равна 180° • (n — 2).2.

Сумма внешних углов выпуклого n-угольника, взятых по одному при каждой вершине, равна 360°.3. В выпуклом n-угольнике из каждой вершины можно провести (n — 3) диагоналей, которые разбивают n-угольник на (n — 2) треугольников.

4.

В выпуклом n-угольнике число диагоналей равно n(n — 3)/2.

☑  2. Правильные многоугольники

Выпуклый многоугольник, у которого равны все углы и стороны, называется правильным.
Свойства
1. Каждый угол правильного n-угольника равен аn = 180°(n — 2)/n2. Около правильного n-угольника можно описать окружность, и притом только одну.3. В правильный n-угольник можно вписать окружность, и притом только одну.4.

Окружность, вписанная в правильный n-угольник, касается всех сторон n-угольника в их серединах.5. Центр окружности, описанной около правильного n-угольника, совпадает с центром окружности, вписанной в тот же n-угольник.6. Длина стороны правильного n-угольника, вписанного в окружность радиуса R, равна а = 2R sin(180°/n).

7.

Длина стороны правильного n-угольника, описанного около окружности радиуса r, равна а = 2r tg(180°/n).

☑ 4. Параллелограмм

Признаки параллелограмма (рис. 48)

  1. Если в четырехугольнике две стороны равны и параллельны (АВ = DC, АВ || CD), то такой четырехугольник — параллелограмм.
  2. Если в четырехугольнике противоположные стороны попарно равны (АВ = DC, AD = DC), то такой четырехугольник — параллелограмм.
  3. Если в четырехугольнике противоположные углы попарно равны (∠A = ∠C; ∠B = ∠D), то такой четырехугольник — параллелограмм.
  4. Если в четырехугольнике диагонали пересекаются и в точке пересечения делятся пополам, то такой четырехугольник — параллелограмм.

☑ 5. Трапеция

Равнобедренная трапеция

Прямоугольная трапеция

☑ 18. Окружность

Окружностью называется геометрическое место точек плоскости, равноудаленных от одной ее точки (центра) (рис. 37).Отрезок, соединяющий центр окружности с точкой на окружности, называется радиусом. Обозначение: г или R.На рисунке ОС = ОЕ = OD = R.Часть окружности (например, CmD) называется дугой.

Отрезок, соединяющий две точки окружности, называется хордой, а хорда, проходящая через центр, — диаметром.АВ, ВС, CD и СЕ — хорды окружности. СЕ — наибольшая из хорд — диаметр.Обозначение: d или D. D = 2R.Часть плоскости, ограниченная окружностью, называется кругом.

Часть круга, ограниченная дугой (CmD) и стягивающей ее хордой (CD), называется сегментом.Часть круга, ограниченная двумя радиусами и дугой, называется сектором.Угол, образованный двумя радиусами, называется центральным (∠COD на рис. 37).

Угол, у которого вершина лежит на окружности, а стороны являются хордами, называется вписанным (например, ∠ABC).

☑  19. Свойства касательных к окружности

Угол, образованный двумя касательными (СА и СВ), исходящими из одной точки, называется описанным (∠ACB на рис. 38).1. Радиус, проведенный в точку касания, перпендикулярен касательной.2. Две касательные, проведенные к окружности из одной точки, равны, и центр окружности лежит на биссектрисе угла между ними.

☑  20. Окружность и треугольник

1. Около всякого треугольника можно описать окружность; центром окружности является точка пересечения перпендикуляров, проведенных к сторонам через их середины (рис. 39).
2. Во всякий треугольник можно вписать окружность; центром окружности является точка пересечения биссектрис (рис. 40).

☑ 25. Уравнение окружности

Вы смотрели «Краткий курс геометрии 8 класс» — все определения, теоремы и основные свойства из Геометрии за 8 класс. Выберите дальнейшие действия:

О ваших правах
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: